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Abstract
The behaviour of interacting ultracold Rydberg atoms in both constant electric fields and laser
fields is important for designing experiments and constructing realistic models of them. In this
paper, we briefly review our prior work and present new results on how electric fields affect
interacting ultracold Rydberg atoms. Specifically, we address the topics of constant
background electric fields on Rydberg atom pair excitation and laser-induced Stark shifts on
pair excitation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There has been increasing interest in ultracold Rydberg atoms
over the last several years. The interest is largely the result of
the unique properties of the long-range interactions between
Rydberg atoms. At ranges exceeding 10 μm, the potential
energies associated with Rydberg atom interactions can be
greater than the kinetic energy of the atoms in an ultracold
gas (T � 1 mK). Rydberg atom interactions can also be
anisotropic and can be tuned with electric fields and state
selection of the atom’s principal quantum number, n [1]. All of
these properties have interesting consequences. One important
consequence, central to this field, is that Rydberg atom
interactions can be used to create a single collective atomic
excitation in a macroscopic volume on the order of microns
in a gas [2] . This phenomenon is referred to as the ‘Rydberg
atom dipole blockade’ and is important because it provides a
pathway to quantum mechanically entangle clusters of atoms,
a task that has proven extremely difficult to accomplish by any
means [3]. Because of this collection of extraordinary features,
ultracold Rydberg gases are a valuable system for investigating
a host of interesting topics such as quantum dipolar gases
[4], fundamental experiments on quantum mechanics [5], the

development of quantum devices like quantum gates [6] and
single photon sources [7], many-body phenomena [8], and
exotic forms of matter like long-range Rydberg molecules [9].
All of these research directions have been vigorously pursued
in recent years. However, the study of ultracold Rydberg gases
is still quite new, the first experiments having taken place a little
over 10 years ago [10], and despite the intense recent activity
many of the promising directions have yet to be fully explored.
As a result, one can anticipate not only continuing successes in
current research areas but also the emergence of new research
directions that use ultracold Rydberg atoms.

A starting point for understanding many of the research
topics that use ultracold Rydberg atoms is the interaction
between Rydberg atom pairs. A key element for understanding
Rydberg atom pair interactions, which we address here, is
how they are affected by electric fields. In general, although
not always, electric fields are more important than magnetic
fields for Rydberg atom experiments [1]. Rydberg atoms
are particularly sensitive to electric fields. Since a Rydberg
electron ranges far from its nucleus, the atom is highly
polarizable and relatively small electric fields, on the order
of 10–100 mV cm−1, can lead to significant perturbations. In
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fact, the Rydberg atom polarizability scales with the principal
quantum number as n7, so the effect of an electric field can
vary widely depending on the Rydberg state. Because stray
electric fields are present in all experiments, laser fields are
used to excite and probe Rydberg atoms, electric fields are
used to detect Rydberg atoms via pulsed field ionization
(PFI) and laser fields are used to trap atoms which are
subsequently excited to Rydberg states, perturbation due to
electric fields is often significant in experiments and cannot
be easily eliminated. Electric fields, though, are not always
a burden for cold Rydberg atom experiments. Electric fields
can also be useful, since, for example, they can be used to
manipulate the interactions between Rydberg atoms. It is
therefore important to understand the effects of electric fields
so that at minimum, the experimental complications can be
managed and at best experiments can be optimized.

In this paper, we describe some of the most important
effects electric fields have on ultracold Rydberg atoms and
how ultracold Rydberg atoms interact. In the next section, we
explain some of the ways that constant background electric
fields can affect interactions between pairs of Rydberg atoms
[11–14]. In the following section, we address how laser fields,
through the ac-Stark effect, can influence the excitation of pairs
of Rydberg atoms [15]. Finally, we summarize and discuss
the relationships between these effects. We will confine our
discussion to alkali atoms.

2. The effect of constant electric fields on Rydberg
atom pair interactions

Rydberg atom pair interactions can be measured so that
experiments can be directly compared to calculations. Figure 1
shows two spectra taken by scanning a narrow bandwidth,
∼1 MHz, laser to excite ultracold Cs Rydberg atoms to
measure the number of ions created after PFI. Figure 1 is an
example of experimentally observed spectra of an ultracold
Rydberg gas. The large peaks in the spectra are due to
the creation of cold Cs 66D Rydberg atoms. The more
interesting features, from the perspective of Rydberg atom
interactions, are the small ones that are labelled with the
asymptotic Rydberg atom pair states, 65D + 67D for example,
with which they are associated [14, 16]. The spectral
features labelled 65D + 67D are the result of non-resonant
two-photon absorption of the laser light by Cs 6P3/2 atom
pairs. The label indicates that one atom is in the 65D
Rydberg state asymptotically and the other atom is in the
67D state asymptotically. The absorption of two photons by
two 6P3/2 atoms in a Cs magneto-optic trap (MOT) produces
a pair molecular state consisting of two excited interacting
Cs Rydberg atoms. The same types of features have been
observed in Rb ultracold Rydberg gases [14, 17]. The second
qualitative observation about the spectral features associated
with the 65D + 67D pair excitation is to note that the energy
shifts with the background electric field. The energy shifts are
large on the scale of the kinetic energy and spectral bandwidth
of the laser. These observations are direct experimental
evidence of interacting Rydberg atom pairs and can be used
as benchmark data to test calculations of Rydberg atom pair

Figure 1. The spectra of a Cs ultracold Rydberg gas as a function of
an applied constant electric field around the 66D Rydberg state. A
laser operating at ∼ 508 nm is scanned and Rydberg atoms are
detected via pulsed field ionization. The signal is proportional to the
number of Rydberg atoms or Rydberg atom pairs excited.

interactions. In this section, we will address this topic and
explain how to calculate the Rydberg atom pair interactions
and the energy shifts of those interactions in the presence of a
constant or slowly varying background electric field. Our goal
is to give new researchers in this field a picture of Rydberg
atom pair interactions so that they can understand them both
quantitatively and qualitatively.

Cold Rydberg atom pair interactions are typically
dominated by near zone, non-radiative, Coulombic
interactions. Coulombic interactions are due to the quantum
mechanical fluctuations of the charge distributions of the two
interacting atoms which cause separation dependent, R, energy
shifts of the atomic energy levels. In an overly simplified
but useful picture of the interactions, the charge fluctuations
of one atom produce an electric field at the location of the
second atom which causes an energy shift of the second atom’s
quantum state. Simultaneously, the charge fluctuations of
the second atom produce an electric field at the position of
the first atom that leads to energy shifts of atom 1. Since
atomic Rydberg states have large polarizabilities, they are very
sensitive to these electric fields and we expect and observe
strong interactions at large internuclear separations, typically
larger than the atomic kinetic energy at R ∼ 10 μm. The
Rydberg atom interactions lead to forces between two Rydberg
atoms that can be described by a potential that depends on
R and the orientation of two atoms relative to some fixed
axis. The atoms can be attracted or repelled from each other
depending on the relative phases of the charge fluctuations
and strength of their couplings to different states. The charge
fluctuations can lead to resonant exchange of energy if they can
resonantly excite the other atom. Resonant energy exchange
typically leads to strong interactions at large R. Resonant
energy exchange, however, is not necessary for Rydberg
atom interactions to be strong because of the large density
of Rydberg states which leads to many atomic states being
relatively near to resonance. In addition to being strong at
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large separations, the Rydberg atom interactions can also be
different depending on the orientation of the two atoms because
the charge fluctuations produced are anisotropic, depending on
the atomic states involved. The important fluctuations of the
charge distributions almost always occur at frequencies such
that the atoms are close enough to each other so the electric
field does not have to propagate from one atom to the other as
electromagnetic radiation. This latter point is what is meant
by the words ‘near zone.’

Constant background electric fields can affect the charge
fluctuations by shifting the atomic energy levels and mixing
together different electric field free atomic states. The energy
shifts and atomic state mixing change the spectrum of the
charge fluctuations and how they couple different states. An
electric field can also polarize a sample of Rydberg atoms
inducing large dipole moments in the atoms. This causes the
atoms to behave as permanent dipoles. Accordingly, there
is an additional anisotropic dipole–dipole interaction between
Rydberg atom pairs that is induced by an electric field of
sufficient strength to polarize the Rydberg atoms.

The qualitative discussion presented in the last several
paragraphs can be quantified for the calculation of Rydberg
atom interaction potentials. To describe our calculations
of Rydberg atom pair interactions, we start by taking the
perspective that the interactions perturb the two Rydberg
atoms. The reason we take this approach is that many of the
applications of Rydberg atoms focus on the atoms themselves
and not the molecular pair states. The interactions that lead
to dipole blockade, for example, have largely been viewed as
an energy shifting of two, or more, excitation states out of
resonance with a laser, in a volume determined by the dipole
blockade radius which is determined by the laser bandwidth,
atomic linewidth and interaction strength [2]. An equally
valid alternative approach to using atomic basis states is to
use a molecular basis. Since the choice of basis is one of
convenience, we will not discuss using a molecular basis
here. As a consequence of our choice of basis, the asymptotic
energies of the atomic Rydberg states are used to label each
adiabatic pair state. If an electric field is present, the pair state
is labelled by the state with the dominant electronic character
at infinite separation. One advantage of this scheme is that
we avoid correlating molecular state labels with asymptotic
atomic pairs. The pair energies at infinite separation are
just the sums of each of the atomic energies, which are
well known from quantum defect measurements and include
atomic fine structure. Using the energies determined by
experimental measurements of the quantum defects for the
separated atoms classifies the calculation as semi-empirical.
The basis we have introduced here is a j1–j2 coupling scheme,
as described by Herzberg [18], where ji is the sum of orbital
and spin angular momentum of the electron for atom i.
Each individual atom maintains strong LS coupling and the
molecular states conserve the projection quantum number
along the internuclear axis, mj1 + mj2 = M . The M quantum
number is usually labelled � in molecular physics.

Because the Rydberg atom pair interactions are governed
by charge fluctuations, it is natural to use a multipole expansion
in R−1 to calculate the moments of the charge fluctuations

to obtain the interaction potentials [19]. This is a standard
approach to the problem of interacting atoms at internuclear
separations where exchange interactions are negligible. When
two Rydberg atoms are separated by distances of several μm
or greater, as in typical cold trapped Rydberg gases, dipole
and quadrupole interactions dominate. Neglect of higher
multipoles than the quadrupoles can be justified using the
scaled van der Waals coefficients [20] or by, for example,
calculating the octopole interactions and verifying that they
can be neglected [12]. Calculating the octopole interactions
and verifying that they are insignificant allows one to safely
neglect higher order multipole interactions. As an example,
even at the lowest R considered in the calculation of pair
states around 89D + 89D for Cs, the energy shifts due to
octopole interactions were on the order of 10−4 cm−1, which
is 1% of the combined dipole and quadrupole contributions at
R = 3 μm [12]. The octopolar interactions quickly dropped
to below 10−6 cm−1 at R = 6 μm for this particular case.
Similar results, with distances scaled to the changing principal
quantum number, were obtained for Rb Rydberg atom pair
calculations for n ∼ 37 [11]. There has not yet appeared
any experimental evidence that octopolar interactions are
important. In contrast, some experimental evidence exists
that quadrupolar interactions are important for collisions that
occur between Rydberg atoms [11]. Of course, using a
multipolar expansion also helps us to decrease the number of
states involved in a calculation due to the multipolar transition
selection rules. However, the multipolar selection rules for
field-free Rydberg states can be badly broken in a background
electric field.

The interactions between the Rydberg atoms can span the
entire range of resonant to non-resonant cases depending on
the atomic energy levels involved [12]. Purely non-degenerate
interactions yield a potential with an R−6 dependence while
purely degenerate interactions yield an R−3 dependence.
For most Rydberg states, because there is a high density
of states, both degenerate and non-degenerate interactions
are important. This is a complication for Rydberg atom
interactions since generally there are many near-degenerate
atomic energy levels that can exchange energy. Sums of
many near-degenerate interactions can actually dominate or
significantly change a true resonant interaction. Additionally,
states which are degenerate at large R may not be degenerate
at shorter ranges where several multi-polar interactions may
play a role and the atomic states have been mixed by the
interactions.

One important advantage to recognize when approaching
the problem of calculating Rydberg atom pair interactions is
that the transition strength between atomic Rydberg states due
to multipolar interaction decreases as the difference between
principal quantum numbers, �n, of the two states increases
[1, 21]. The decrease in transition strength with �n can
be understood qualitatively by recalling that for large n the
oscillator strength of a transition due to dipolar interaction
from state |nlm〉 to |n′l′m′〉 averaged over all l, l′, m, and m′

for large n decreases as the energy separation of the two states
to the third power:

Fn′n ∝
(

Ry

E′
n − En

)3 1

n6
= n3

8(n′ − n)3
. (1)
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Coupled with the fact that the Rydberg atom energies can be
calculated very accurately so that asymptotic near resonances
for pair states can be identified before a calculation is carried
out and the difficulty of treating degeneracies perturbatively,
the decrease of transition strength with �n points towards
using matrix diagonalization to calculate Rydberg atom
interaction potentials. This approach suggests expanding the
basis states around some energetic region and truncating it
when a desired level of convergence is reached.

A perturbative approach to the calculation of the Rydberg
atom interaction potentials for a pair of atoms in R−1 will
give van der Waals coefficients [20]. However, because of
the large density of Rydberg atom energy states, this approach
is not accurate for most cases of interacting Rydberg atoms,
particularly in the presence of electric fields. Near-resonant
interactions become non-negligible and lead to avoided
crossings at large R which are important to calculate accurately
to make quantitative comparisons to experiment. We have
calculated Rydberg atom pair interactions by diagonalization
of the Hamiltonian in a truncated basis. The size of the
basis is determined by the convergence of the calculated
pair interaction potentials [12]. Matrix diagonalization can
accurately account for the off-resonant, near-resonant and
resonant interactions at the same time. For cases where
an electric field is present and assumed to lie along the
internuclear axis, the calculation is simplified because M is
a good quantum number [12]. Convergence on the level of
10−4 cm−1 is still only acquired by large pair basis sizes of
∼6000 close-lying states for M = mj1 + mj2 = 0. For
higher M, slightly smaller basis sizes can be used, for example
∼ 4000 basis states at M = 5 for Cs pairs around 89D + 89D
[12]. The calculations are computationally intensive but can
be easily parallelized in a straightforward way for a cluster
architecture. In the case of a background electric field
strong enough to polarize the atoms or if the interactions are
significantly anisotropic, larger basis set sizes are required
and the calculations become more technically challenging.
Angular dependence for these calculations is addressed in
more detail at the end of this section. The range of R
over which this overall method is valid is determined by
the near zone, or long wavelength, approximation and the
R where exchange and Coulomb repulsion of the two alkali
Rydberg electrons become significant. When the large matrix
diagonalization method is required, as opposed to perturbation
theory, is a more complicated question. The answer depends
on how accurately the potentials must be calculated to answer
a specific experimental question. For collisions and the
description of exotic bound states, a perturbative approach
is unlikely to yield sufficient accuracy as these phenomena
involve dynamics at short range where many curves interact
with each other. On the other hand, a careful application
of perturbation theory may work at long range if accuracy
at the several MHz level can be tolerated. If perturbation
theory is applied, it is important to sum over the interactions
with all of the most important states. This procedure can
be as difficult as simply doing the matrix diagonalization.
Particularly problematic are quadrupolar interactions between
near degenerate states at long range and large background

electric fields which mix and shift the atomic states. However,
in some simple cases such as S states used in many dipole
blockade experiments, where the actual extent of the blockade
volume is not important, perturbation theory can likely be
applied in a straightforward manner.

Neglecting retardation effects gives an upper bound on
R set by the reduced wavelength Rmax = λ̄ = λ/2π [22],
where λ is the transition wavelength between two states of the
Rydberg atoms. There are many states that contribute to a
particular interatomic potential so there are many different
transitions, and consequently λ, that play a role in an
interaction potential calculation. The validity of the long
wavelength approximation needs to be checked for each set
of coupled Rydberg states used in a calculation. However, the
long wavelength approximation turns out to be an accurate
assumption for almost all Rydberg atom states. For Rb,
a transition from the continuum to 18S is approximately
500 cm−1. This corresponds to a wavelength of 20 μm, or
a reduced wavelength of 3.2 μm. Such a transition, because
of the large implicit change in n, will most likely not make a
significant contribution to any Rydberg atom pair potentials.
For a transition between n = 20 and n = 18, the reduced
wavelength is 12 μm. These principal quantum numbers,
n = 18 and n = 20, are rather small for most recent
ultracold Rydberg atom experiments. At n = 50, more typical
of current experiments, transition frequencies are ∼5 cm−1

between neighbouring states giving a reduced wavelength
of 2 mm! Transitions between adjacent Rydberg states for
n > 50 have even smaller energy differences due to the
n−3 dependence of the energy separations. These extreme
examples of transitions give a measure of how accurate the
near-zone approximation works. It is useful to keep in mind
that this approximation is most likely to break down at small
n. For n > 40, it is unlikely that this approximation will
break down for realistic experimental conditions for states and
associated transitions that make significant contributions to the
interatomic potentials.

A conservative estimate of the lower bound for R is the
LeRoy radius [23], where RLR = 2(

√
〈α|r2|α〉 +

√
〈β|r2|β〉).

In this expression, |α〉 and |β〉 represent sets of atomic quantum
numbers. The LeRoy radius is typically a crude estimate
of where exchange interactions become non-negligible. For
89D pairs we calculated RLR ∼2.5 μm [12]. Since the
average distance between atoms in a cold Rydberg gas at
typical experimental number densities of ∼106–1010 cm−3 is
∼ 3–25 μm, the relevant range of R for most experiments
meets the LeRoy criterion. A better estimate of the inner
R where the calculations are valid is obtained by calculating
the direct and exchange integrals for the Coulomb interaction
between the two Rydberg electrons. Because the electrons
are in diffuse orbitals and the multipolar interactions are large,
this reduces the internuclear separations where the calculations
are useful. We are currently in the process of including
the electron repulsion in our calculations, but this work is
preliminary.

Figures 2, 3 and 4 show potential energy curves calculated
for Cs and Rb at background electric fields of 0, 0.5 and
2 V cm−1, respectively, around the 37D + 37D asymptote for
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Figure 2. Rydberg atom interaction potentials calculated as described in the text for Cs and Rb Rydberg atom pairs around the 37D + 37D
asymptote. The calculation is done for the case of no background electric field.

Figure 3. Rydberg atom interaction potentials calculated as described in the text for Cs and Rb Rydberg atom pairs around the 37D + 37D
asymptote. The calculation is done for the case of an electric field of 500 mV cm−1.

Figure 4. Rydberg atom interaction potentials calculated as described in the text for Cs and Rb Rydberg atom pairs around the 37D + 37D
asymptote. The calculation is done for the case of an electric field of 2 V cm−1.
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M = 0 over a range of R where the calculation is valid. We
have labelled the states by the asymptotic atomic pair states to
which each potential correlates, as described previously. The
potential energy curves (eigenvalues) are shown as a function
of R. The interaction potentials are calculated in three steps:
(1) calculation of Stark-shifted single-atom energies and basis
states; (2) selection of an appropriate truncated pair basis; and
(3) diagonalization of the Hamiltonian in the Stark-shifted pair
basis. The matrix that must be diagonalized can be written in
a Stark-shifted pair basis as [12]

〈̃α|〈β̃|H(R)|̃α′〉|̃β ′〉 = δαα′δββ ′Eαβ + 〈̃α|〈β̃|HDD(R)

+ HDQ(R) + HQQ(R)|̃α′〉|̃β ′〉, (2)

where |̃α〉 and |̃β〉 denote sets of atomic quantum numbers and
the tilde denotes Stark-shifted states for these calculations. R
is taken to be oriented along the quantization axis z, which is
also the direction along which the electric field points. The
term Eαβ = Eα + Eβ denotes the asymptotic → ∞ Stark-
shifted energies including atomic fine structure. HDD(R),

HDQ(R) and HQQ(R) correspond to the dipole–dipole,
dipole–quadrupole and quadrupole–quadrupole interactions,
respectively. It is also possible to calculate the new eigenstates
after matrix diagonalization. The eigenstates can be written as

|	〉(R) =
∑

Cαβ(R)|̃α〉|̃β〉, (3)

where Cαβ is the expansion coefficient in the Stark-shifted
pair basis. The eigenstates provide insight into how the
interactions mix the asymptotic atomic states. One advantage
of calculating the Stark-shifted atomic basis first is that it is
easier to separate the effect of the background electric field
from that of the interactions. The choice of the electric field
lying along the internuclear axis primarily neglects the effect
of the static dipolar interaction induced by the electric field.
We have estimated this effect to be ∼10−6 of the dipole
and quadrupole interactions over the range of internuclear
separations shown in the figures, consistent with our prior
work [12]. The static dipolar interaction at these electric
fields for these states is completely negligible compared to
the accuracy of the potential curves and other interactions.
However, at larger electric fields, there will be significant
angular dependence as we describe later in this section.

Figures 2, 3 and 4 show that the long-range interactions
between Rydberg atoms are tunable using electric fields. As
the electric field is changed over a relatively small range of
values, 0–2 V cm−1, the potential curves change dramatically,
particularly for Rb. The potential curves also show that the
potentials are atomic species dependent. The differences
are mainly due to differences in the quantum defects and
fine structure. The fact that high angular momentum states
combined with the 39P states of Rb result in near energy
degeneracies with the 37D + 37D states of Rb shows how
complex Rydberg atom pair interactions can be. The Rb
curves, in contrast to Cs, have many avoided crossings at
long range and significantly more perturbation. The figures
show that a particular species of alkali atom may actually
have advantages over another one for an experiment. For
example, the lower Cs states at 2 V cm−1 would be better
for a dipole blockade experiment than those of Rb at any

electric field and Cs at smaller electric fields. Note that all
the potential curves within a narrow bandwidth at the lowest
energy asymptote are repulsive for Cs at 2 V cm−1 and these
curves are separated by large frequency intervals compared to
typical laser bandwidths used for blockade experiments from
the other asymptotes. At 2 V cm−1, the blockade distance will
have some angular dependence, the blockade volume will not
be a sphere, but the angular effect from the polarization of
the atoms by the external electric field will be small compared
to the ∼200 MHz height of the lowest barrier. This latter
statement can be justified by taking the result found in the
section on angular dependence of the potentials and scaling it
for n = 37. Of course this is only one example, but it illustrates
the points that electric fields have a large impact on the shape of
Rydberg atom interaction potentials, the interaction potentials
at the same quantum numbers for different alkali species are
not the same, in fact the interactions may not even be similar,
and electric fields can be useful for manipulating the Rydberg
atom interactions.

Another interesting and important feature that is shown in
figures 2, 3 and 4 is the splitting of asymptotically degenerate
Rydberg atom pair states. There are two effects that lead
to the splitting and avoided crossings between states that are
not dipole coupled at zero electric field. The background
electric field causes an R−3 resonant coupling between
the asymptotically degenerate states and the quadrupole–
quadrupole interaction creates an R−5 resonant coupling
between such states. The first effect is due to the mixing
by the Stark effect while the latter effect is a result of the non-
vanishing quadrupole or higher moments of the interacting
states. Because these interactions tend to mix states with
different mj they tend to suppress the angular dependence
of the multipolar interactions when the electric fields are not
strong enough to polarize the Rydberg atoms.

To probe these potentials, we have carried out several
experiments [11, 14–16]. These experiments have investigated
collision dynamics and molecule formation. We have been
able to measure the shape of several features of the potentials
and test these against our calculations. In [14], Cs Rydberg
atom time-of-flight imaging was used to obtain kinetic energy
release data on two dissociating atoms after they were excited
to a stationary but repulsive region of a potential curve
corresponding to Cs 88D + 90D. Remarkably, the data
agreed within experimental error. In [16], bound states of
Cs Rydberg atom molecules were measured using a form of
Coulomb explosion imaging. Again, the data were in excellent
agreement with the calculations. Finally, we were also able to
quantitatively explain results on Rb Rydberg atom collisions
using our calculated Rb potential energy curves [11]. Figure 5
shows measured rate constants for the yield of Rb nP atoms
after the excitation of Rb nD+nD states and a calculation based
on a Landau–Zener model of those same quantities. Given
the complexity of the interatomic potentials and numbers of
avoided crossings, explained fully in [11], the agreement is
further evidence that our Rydberg potential energy calculations
are accurate.

The angular dependence of the Rydberg atom interaction
potentials is more difficult to calculate, but is especially
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Figure 5. Theoretical and experimental rate constant, K, for the
production of Rb (n + 2)P Rydberg atoms after the excitation of
nD+nD Rydberg atom pairs for 0.5 V cm−1 and 2.0 V cm−1 as a
function of n for a PFI delay time of 100 ns.

important in large electric fields when the Rydberg atoms
become polarized. The angular dependence of the potentials
can also be important in small or zero background electric
fields in sensitive experiments that probe interactions on the
scale of MHz. Many experiments are not sensitive to angular
dependence because they average over all impact parameters of
the colliding or interacting Rydberg atoms. Particularly nice
results in confined geometries have shown that the angular
dependence of Rydberg interactions can be observed [24].
More experiments will no doubt be aimed at measuring the
angular dependence of Rydberg atom interactions in the future,
so we discuss the calculation of angularly dependent potentials
here.

The multipolar interaction Hamiltonian can be written as
a series of powers of R−1:

H(r1, θ1, φ1; r2, θ2, φ2;R)

∝
∞∑

l1=1

∞∑
l2=1

+l<∑
m=−l<

Cl1,l2,m

r
l1
1 r

l2
2

Rl1+l2+1
Ym

l1
(θ1, φ1)Y

−m
l2

(θ2, φ2),

(4)

where (r, θ, φ) are the electronic coordinates for each atom,
and R is the internuclear distance. Terms with l = 1 are
dipolar in nature and terms with l = 2 are quadrupolar in
nature. For example, the term with l1 = 1, l2 = 2 would
be a part of the dipole–quadrupole interaction. In the case
where the electric field is parallel to the internuclear axis,
the atomic wavefunctions are written in terms of the same
coordinates (r, θ, φ) as the Hamiltonian. In this Hamiltonian,
θ is measured with respect to the internuclear axis which
defines the z-axis. The calculation of the Hamiltonian matrix
elements requires calculation of the radial matrix elements
and integrals of products of three spherical harmonics.
The latter integrals simplify to products of Clebsch–Gordan
coefficients:

∫ π

0

∫ 2π

0
sin(ϑ)Ym1

n1
(ϑ, ϕ)Ym2

n2
(ϑ, ϕ)Ym3

n3
(ϑ, ϕ)∗dϕdϑ

=
√

(2n1 + 1)(2n2 + 1)

4π(2n3 + 1)
〈n1 n2 0 0 | n1 n2 n3 0〉

× 〈n1 n2 m1 m2 | n1 n2 n3 m3〉. (5)

In the case where the electric field is at angle � to the
internuclear axis, atomic wavefunctions are written in terms
of the coordinates (r, θ ′, φ′). These coordinates are measured
in a coordinate system with the z-axis along the electric field.
The primed coordinate system is thus rotated with respect to
the one used in the Hamiltonian, which has its z-axis along
the internuclear axis. The rotation that has to be applied
to the Hamiltonian to make easy integration possible is one
that ensures that the Hamiltonian is also written in terms
of the primed coordinates. The unprimed angles appear in
the Hamiltonian only as arguments of spherical harmonics.
The rotation of spherical harmonics from the unprimed to the
primed system is given simply by the identity

Ym
l (θ, φ) =

∑
m′

Dl
m′m(�,�,�)Ym′

l (θ ′, φ′), (6)

where Dl
m′m(�,�,�) are the Wigner rotation matrix

elements, expressed in the basis of spherical harmonics. The
Dl

m′m(�,�,�) depend on the Euler angles; here, � should
be �(E, R), the angle between the electric field and the
internuclear axis of the atomic pair. The expression for the
rotation of the spherical harmonic is used to simply replace
the spherical harmonics in the Hamiltonian by sums over
other spherical harmonics that now depend on the primed
coordinates. Note that the rotation conserves l, but mixes
m. Thus, dipolar interactions stay dipolar, and quadrupolar
interactions stay quadrupolar. However, the resulting rotated
Hamiltonian is not block-diagonal with respect to M in the
Stark-shifted atomic pair basis as it was if the electric field
lies along the internuclear axis. This makes the calculation
more difficult because it requires a dramatic increase in the
number of basis states. Even on a cluster supercomputer, the
Hamiltonian matrix has to be spread out on several nodes. To
make matters worse, these calculations have to be carried out at
a number of angles sufficient to sample the potential accurately.
Figure 6 shows a calculation of the dipolar potential for
the 90D + 90D state of Cs at a background electric field of
100 mV cm−1. The upper portion of the figure shows the full
potential while the lower part of the figure shows the potential
due to the polarization of the atoms for a several R. This latter
figure is obtained by subtracting out the multipolar van der
Waals potential at the magic angle where the static dipole–
dipole interaction is zero. The figure shows that electric fields
can polarize a sample of Rydberg atoms so that the static
dipole–dipole interaction is as strong or stronger than the van
der Waals interactions. This can lead to many interesting
phenomena such as the appearance of new phases in a quantum
gas or lattice of Rydberg atoms [4].
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Figure 6. (Top) an angularly dependent Cs Rydberg atom pair potential in an electric field of 100 mV cm−1 around the 90D + 90D state.
The potential is shown as a function of R and �. The colour map shows the energy in cm−1 with the zero of energy placed at two times the
ionization limit of the pair state, where both Rydberg electrons are ionized. (Bottom) the static dipole–dipole interaction taken by
subtracting out the van der Waals contribution at the angle where the dipole–dipole interaction vanishes for 90D3/2 + 90D3/2 for M = 0 for
three different R. Perturbations of the potentials due to avoided crossings are seen as deviations from the dipolar interaction.

3. The ac Stark effect and excitation of Rydberg
atom pairs

Due to the large Rydberg atom polarizability, it was expected
that the laser field used to excite Rydberg atoms would play
a role in ultracold Rydberg atom experiments. Ates and co-
workers [25] were the first to point out theoretically that the
Autler–Townes effect, due to the Rydberg excitation laser,
can lead to an anti-blockade effect. Using a microwave
field after Rb nD state excitation, Bohlouli-Zanjani and co-
workers were able to induce resonant population transfer
between Rb Rydberg states in an ultracold Rydberg gas [26].
The first demonstration that the ac Stark effect, due to the
Rydberg excitation laser, can affect the preparation of excited
Rydberg atom pairs was done by Nascimento and co-workers
[15]. In this experiment, population transfer into the nP3/2

state after the excitation of nS1/2 Rb Rydberg atoms was
observed. The experimental results showed that the nP3/2

state population was quadratically dependent on the nS1/2

atomic density, indicating a two-body process. The excitation
scheme that was used to excite each Rydberg atom of a pair
was 5S1/2 → 5P3/2 → nl, where nl is the target Rydberg
state. Clearly, such a result would naturally be attributed to

binary collisions involving attractive potentials. In this case,
however, the interaction between Rb nS1/2 atoms is repulsive
according to perturbation theory in the absence of an electric
field [20] and the diagonalization method described in the
previous section for the background electric fields present in
the experiments [12]. The nP3/2 Rydberg atom production
is actually due to direct excitation of nP3/2 + (n − 1)P3/2

Rydberg atom pairs. Although this two-photon transition
is asymptotically forbidden, it can occur as a result of the
ac Stark shifts induced in the intermediate 5P3/2 + 32S1/2

state and the dipole–dipole interactions between the pair of
Rydberg atoms in the excited state. In this section, we will
explain how the ac Stark effect of the excitation laser and
the dipole–dipole interactions can affect the preparation of
excited Rydberg atoms by further explaining this interesting
experimental result.

We start by considering the Rydberg atom pair potentials
around the nS1/2 + nS1/2 asymptote for n ∼ 32 and the
R dependent eigenstates of the interacting pairs of atoms.
Specifically, we consider the coefficients Cαβ obtained by
diagonalization of the Hamiltonian in the Stark-shifted pair
basis, as described in the last section of this paper [12]. In
figure 7(a), we show the 32̃S + 32̃S pair potentials as well
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(a)

(b)

Figure 7. (a) Rubidium 32̃S1/2 + 32̃S1/2 and surrounding states for
M = 1 and a background εb = 500 mV cm−1. The 32̃P + 31̃P pair
state is energetically below 32̃S1/2 + 32̃S1/2 for all relevant R.
(b) C(R) = |〈32̃S1/2 + 32̃S1/2 | 32̃P + 31̃P〉|. The relevant states for
the model are highlighted in red (online).

as surrounding states for M = 1 in a background electric
field of 500 mV cm−1 for Rb. The 32̃P + 31̃P pair state is
energetically below the 32̃S + 32̃S pair state for all relevant
R. The projection of the 32̃P + 31̃P onto the 32̃S + 32̃S pair is
given by C(R) = |〈32̃S1/2 + 32̃S1/2 | 32̃P3/2 + 31̃P3/2〉|, and
is shown in figure 7(b). Since C(R) is nonzero, the dipole
transition to the 32̃P + 31̃P state is not forbidden. The pair
potential calculation indicates that C(R) is primarily due to
a strong dipole–dipole interaction. C(R) does not depend
strongly on the dc electrical field in the range 0–5 V cm−1.
In this case, the oscillator strength for the transition, then, is
provided by the small amount of dipole-allowed configuration
that is mixed into the state by the Rydberg atom interactions.
We have checked the weak dependence on the dc electric field
experimentally for Rb by investigating how a range of dc fields
affects the observed population transfer. However, the state
mixing due to dipole–dipole interaction alone cannot explain
the observations as the 32̃P + 31̃P state is still far detuned from
the laser frequencies used in the Rydberg atom pair excitation
scheme. The explanation of the observation must also include
the excitation dynamics, namely the ac Stark shifts, or Autler–
Townes effect, of the laser field.

The excitation process including the ac Stark effect can
be modelled using a density matrix approach. Our theoretical
model considers an effective three-level system, which consists
of the pair states 5P3/2 + 5P3/2 (state 1), 5P3/2 + 32̃S1/2 (state
2), and the final 32̃P3/2 + 31̃P3/2 pair state (state 3) [27]. In
general, the ac Stark effect can lead to much more complicated
dynamics involving many more states than 3. However, this
system is a highly simplified one that can be investigated
to isolate the ac Stark effect. We calculated the excitation
probabilities of states around these ones and found them
to be two orders of magnitude smaller. These calculations
verified that the three-state system described captures the
essential physics. The density matrix equations for these three
pair states must be solved numerically. The density matrix

equations, after applying the rotating wave approximation, are

ρ ′
33(t) = −γ3ρ33(t) + i�2(t)(̃ρ32(t) − ρ̃23(t))

ρ ′
22(t) = −γ2ρ22(t) − i�2(t)(̃ρ32(t) − ρ̃23(t))

+ i�1(t)(̃ρ21(t) − ρ̃12(t))

ρ ′
11(t) = −γ1ρ11(t) − i�1(t)(̃ρ21(t) − ρ̃12(t))

ρ̃ ′
32(t) = −(γ31 + i�2)̃ρ32(t) + i�2(t)(ρ33(t) − ρ22(t))

+ i�1(t )̃ρ31(t)

ρ̃ ′
31(t) = −(γ32 + i(�2 + �1))̃ρ31(t)

+ i�1(t )̃ρ32(t) − i�2(t )̃ρ21(t)

ρ̃ ′
21(t) = −(γ21 + i�1)̃ρ21(t) + i�1(t)(ρ22(t) − ρ11(t))

− i�2(t )̃ρ31(t) (7)

where �1(t) = μ1ReE(t)/2h̄, μ1 is the dipole moment of the
5P → 32S transition, �2(t) = μ2ReE(t)/2h̄, μ2 = C(R)μ1;
γ2 = 2π × 6.06 MHz, γ31 = 1/τ32S + 1/τ31P and τ32S and
τ31P are the lifetimes of 32S and 31P states, respectively.
γ32 = γ2/2, �1 = 0 since the laser is on resonance for the
5P → 32S transition, �2 = (E32̃P+31P̃ −E32̃S+32̃S)/h, and E(t)

is the electric field due to the pulsed laser. The prime denotes
differentiation with respect to time. E(t) is an input parameter
in our calculation. To model the non-transform limited pulse,
we have used a multi-mode pulse, which is given by

E(t) =
√

2Io

ε0c
�tG(t,�t)

×
(N−1)/2∑

n=−(N−1)/2

√
1

K
G(nδν,�ν)e

−i(2πnδνt+φn), (8)

where the mode spacing is δν = 240 MHz, N = 17 modes,
and �ν = 1.5 GHz is the Gaussian width of the power
spectrum. G denotes a normalized Gaussian of specified
spectral FWHM, meaning that it integrates over the full
frequency range to unity. The resulting intensity profile in
time, when averaged over many pulses, is then a Gaussian
with FWHMt = �t = 4 ns. The peak intensity is I0 =
780 MW cm−2. K is the normalization factor for the spectral
density:

K =
(N=1)/2∑

n=−(N−1)/2

G(nδν,�ν). (9)

φn are random phases for each mode. In figure 8(a), we
show a typical pulse used for the calculation. The ac
Stark effect as well as other dynamical effects are taken
into account automatically by the effective three-level system
[27]. The calculation reveals that the ac Stark effect splits
the intermediate level 5P3/2 + 32̃S1/2 as seen by the second
photon into multiple resonances or quasi-states [28], as shown
in figure 8(b). The maximum frequency shift is ∼ ±15 GHz
and corresponds to the maximum Rabi frequency of the laser
pulse. The splitting into multiple resonances, instead of just
two as expected for continuous wave radiation, is due to the
finite duration of the laser pulse. The ac Stark effect shifts
the second photon into resonance with the 5P3/2 + 32̃S1/2 →
32̃P3/2 + 31̃P3/2 transition and coupled with the state mixing
allows direct excitation of the 32̃P3/2 + 31̃P3/2 Rydberg pair
state.
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(a)

(b)

Figure 8. (a) Typical laser pulse used in the calculation. (b)
Splitting of the intermediate level 5P3/2 + 32S1/2 due to ac Stark
effect.

(a)

(b)

Figure 9. (a) Cesium 32̃S1/2 + 32̃S1/2 and surrounding states for
M=1 and a background εb= 500 mV cm−1. The 32̃P + 31̃P pair state
is energetically below 32̃S1/2 + 32̃S1/2 for all relevant R. (b)
C(R) = |〈32̃S1/2 + 32̃S1/2 | 32̃P + 31̃P〉|. The relevant states for the
model are highlighted in red (online).

In figure 9, we show, for the case of Cs, the 32̃S + 32̃S
and surrounding states, figure 9(a), as well as the C(R) =
|〈32̃S1/2 + 32̃S1/2 | 32̃P3/2 + 31̃P3/2〉|, figure 9(b). For Cs,
the energy splitting, �E, between the 32̃P + 31̃P state and the
32̃S + 32̃S state is about three times larger than for the same
Rb state, resulting in a C(R) about ten times smaller. This
difference between Rb and Cs is consistent with a scaling law
used in our previous work [15], where C(R) ∝ n7 ∝ 1/�E7/3.
Therefore, we expect the 32P3/2 signal to be ten times smaller

Figure 10. ρ33, the excited state population, as a function of time
obtained from the calculation described in the text.

in a Cs ultracold Rydberg gas than in a Rb ultracold Rydberg
gas. An experiment of this nature using Cs instead of Rb
would have difficulty observing a signal given its presumably
low level.

In our calculations, we have observed that the population
in the 32̃P3/2 + 31̃P3/2 state, observed by measuring the 32P3/2

population, reaches equilibrium after 15 ns, figure 10. In order
to get the total excited 32̃P3/2 + 31̃P3/2 state population, it is
necessary to integrate from R = 0.55 μm to R = 1.8 μm.
The inner cutoff was chosen to be R = 0.55 μm because the
potentials are so attractive or so repulsive at smaller R that the
pair state is out of resonance with the laser pulse. The outer
cutoff corresponds to the distance at which the multipolar
interaction becomes smaller than the kinetic energy of the
atoms. We obtain an average of Nexc ∼ 5100 excited pairs per
laser pulse with these assumptions. If the maximum density
of excited Rydberg atoms is 5 × 109 cm−3 as measured in the
experiment and considering that the resonant excitation of 32S
atom pairs is saturated at the intensities used in the experiment,
we obtain N32S = 1.3×105 excited 32S atoms per pulse. This
leads to an estimated 32P3/2 to 32S1/2 signal ratio of 3.9%,
which is in excellent agreement with the experimental value
of ∼ 2.8% at a PFI detection time of 100 ns [15]. Differences
in the measured and theoretical values are thought to be due
to errors in finding the number of Rydberg atoms detected and
excited in the experiment since the experimentally determined
numbers were used for the calculations.

The model that we have described predicts that the
population transfer occurs on a short time scale, < 15 ns.
After this short period, the nP state population can only
decay spontaneously or via blackbody processes. To confirm
this, we measured the time evolution of the nP electron
signal up to 10 μs after the laser pulse was applied. It is
well known that blackbody radiation can transfer population
to the nP state, especially at low �n [1]. To eliminate
the blackbody contribution from the detected nP signal, we
used the same technique applied in our work on Rydberg
atom nD+nD collisions [11]. We used a third boxcar gate
to detect the time-dependent population of the states lying
energetically above the nP state Nup. Since these upper
states in this case can only be excited by blackbody radiation,
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Figure 11. N32P, N32PB and Nup populations as a function of time.
The full line is the Nup population exclusively due to blackbody
radiation transfer. The dashed line is the blackbody contribution to
the N32P population obtained with the rate equation model.

Figure 12. N32P to N32S ratio as a function of 32S atomic density.
The full line is a no free parameter model which considers the
two-body contribution and the blackbody radiation contribution.

their populations are a nonadiabatic process and spontaneous
emission-free measurement of the blackbody transfer. We
compared these measurements with a rate equation model
for blackbody radiation transfer, which we have also used in
[11]. In figure 11, we show the experimental populations
for N32P (full square) and Nup (full circle) as a function
of time delay. The figure shows the theoretical model for
blackbody radiation transfer for N32P (dashed line) and Nup

(full line). The 32P3/2 state population without blackbody
contributions, N32PB (open square), is obtained by subtracting
the theoretical 32P3/2 population due to blackbody transfer
from the experimental measurement. The resulting population
exhibits a slight decay, which is consistent with the 32P3/2

state lifetime. After direct excitation and the removal of

the blackbody contribution to the 32P3/2 population, the
remaining fraction of atoms can only spontaneously decay.
The behaviour shown in figure 11 is in agreement with our
theoretical model, which predicts that the population transfer
due to the ac Stark effect of the laser pulse occurs in less than
15 ns. We also emphasise that this behaviour is completely
different from the population transfer that occurs after the
excitation of Rb nD+nD Rydberg atoms [11].

To further verify our blackbody transfer model, we
measured the 32P state population as a function of 32S
atomic density for a time delay of 10 μs. In figure 12,
we show the 32P3/2/32S ratio as a function of ρ32S. The
full line is a theoretical prediction with no free parameters,
which takes into account the two-body contribution from the
Rydberg atom pair excitation at short time delay, < 15 ns, and
the blackbody contribution for 10 μs. Clearly, these results
corroborate our description of the dynamics and the blackbody
radiation.

4. Conclusion

To summarize, we have studied the role of the Stark effect on
interactions between ultracold Rydberg atoms. We have shown
that a small constant electric field can completely change
the interactions between pairs of Rydberg atoms, revealing
the multilevel character of the potentials and the importance
of interactions that occur at short range. The agreement
between theory and experiment that we have shown in this
work and others gives us confidence that our description of
the main physical features is accurate. We expect that the
angular dependence of Rydberg atom interactions will be the
next important test for our theoretical model, as this is an
increasingly interesting avenue to explore. The new time
evolution data presented here on the nP3/2 atom production
after excitation of cold Rb nS1/2 Rydberg atoms provide
further proof that the model presented in our previous work is
accurate [15]. An important conclusion of this paper is that the
effects observed for one specific atomic species cannot always
be extrapolated to another one in a direct way. For each
atomic species and principal quantum number, it is necessary
to calculate the Rydberg atom pair interaction potentials before
any prediction can be made. This may be a crucial point when
comparing experiments performed with different atoms and
different Rydberg states.
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